

SPARSE REPRESENTATIONS FOR IMAGE CLASSIFICATION USING QUANTUM D-WAVE 2X MACHINE

Nga Nguyen¹, Amy Larson¹, Carleton Coffrin², and Garrett Kenyon^{1,3}
¹CCS-3, ²A-1, Los Alamos National Laboratory & ³New Mexico Consortium

D-Wave Debrief, LANL, April 27, 2017

OUTLINE

- A. SPARSE CODING REPRESENTATIONS
- B. IMPLEMENTATION ON D-WAVE MACHINE
- C. SPARSE CODING FOR OBJECT DETECTION
- D. SUMMARY AND FUTURE WORK

OUTLINE

A. SPARSE CODING REPRESENTATIONS

- B. IMPLEMENTATION ON A D-WAVE MACHINE
- C. SPARSE CODING FOR OBJECT DETECTION
- D. SUMMARY AND FUTURE WORK

A. SPARSE CODING REPRESENTAT

Solving a sparse-coding (SC) problem

Objective function is of the form:

$$E = \min_{\{\overrightarrow{a}, \phi\}} \left[\frac{1}{2} |\overrightarrow{I} - \phi \overrightarrow{a}|^2 + \lambda ||\overrightarrow{a}||_p \right].$$

reconstruction error

Lp-sparseness penalty

Olshausen and Field, Nature 381, 607 (1996) Rozell, Johnson, Baraniuk, and Olshausen, Neur. Comp. 20, 2526 (2008)

p=0, the problem is called L0-norm

- NP-hard class
- non-convex problem

A. SPARSE CODING REPRESENTATIONS

Solving a sparse-coding (SC) problem

Objective function is of the form:

reconstruction error

Lp-sparseness penalty

Olshausen and Field, Nature 381, 607 (1996) Rozell, Johnson, Baraniuk, and Olshausen, Neur. Comp. 20, 2526 (2008)

an example of SC reconstruction

Features (Receptive field)

Activity

) *
$$(a_1, a_2, ... a_n)^T =$$

courtesy of Xinhua Zhang

OUTLINE

- A. SPARSE CODING REPRESENTATIONS
- B. IMPLEMENTATION ON A D-WAVE MACHINE
- C. SPARSE CODING FOR OBJECT DETECTION
- D. SUMMARY AND FUTURE WORK

SC ON A QUANTUM D-WAVE MACHINE

mapping the sparse-coding problem onto a Quantum Unconstrained Binary Optimization (QUBO):

D-Wave Hamiltonian: $H(h,Q,a) = \sum_i h_i a_i + \sum_{< i,j>} Q_{ij} a_i a_j$ where $a_i = \{0,1\} \forall i$.

SC ON A QUANTUM D-WAVE MACHINE

mapping the sparse-coding problem onto a Quantum Unconstrained Binary Optimization (QUBO):

D-Wave Hamiltonian:

$$H(h,Q,a) = \sum_{i} h_i a_i + \sum_{\langle i,j \rangle} Q_{ij} a_i a_j$$
 where $a_i = \{0,1\} \forall i$.

This mapping is achieved by the relations:

$$h = -\phi^T \overrightarrow{I} + (\frac{1}{2} + \lambda),$$

$$Q = \frac{1}{2} \phi^T \phi.$$

analogous to L0-sparseness penalty [Nguyen and Kenyon, PMES-16 (2016)]

OUTLINE

- A. SPARSE CODING ON A QUANTUM D-WAVE
- B. IMPLEMENTATION ON D-WAVE MACHINE
- C. SPARSE CODING FOR OBJECT DETECTION
- D. SUMMARY AND FUTURE WORK

DATASET

32x32

24x24

"row"

$$\{\psi_i\}$$

coupling =
$$<\psi_i,\psi_j>$$

orthogonality!

number of features $N_f = 8$

8 hand-designed features

"row"

$$\{\psi_i\}$$

coupling
$$=<\psi_i,\psi_j>$$

orthogonality!

number of features $N_f = 8$

Features

Desire: Randomly generated N_f :

$$8 \le N_f \le 1152$$

Apply Gram-Schmidt Algorithm:

- to fulfill the *Chimera* orthogonality
- the way N_f is generated defines architecture of the mapping

Building features

Building features

24x24 patch images

8 and 32 features

24x24 patch images

8 and 32 features

1100 *active* qubits 3068 *coupling* strengths

overcomplete order:

$$2 = \frac{12x12x8}{24x24x1}$$

stride: 2, 4

24x24 patch images

original

recon

recon

32 and 1152 features

1100 *active* qubits 3068 *coupling* strengths

overcomplete order:

$$2 = \frac{12x12x8}{24x24x1}$$

stride: 24, 4

Energy

images

CLASSIFICATION RESULTS

12x12 patch images

CLASSIFICATION RESULTS

12x12 patch images

Classification task: SVM (liblinear) 1042 training/208 test images

classes	air	auto	bird	cat	deer	dog	frog	horse	ship	truck
accur. (binary)		93.38%	90.87%	89.42%	94.71%	88.94%	87.98%	89.9%	89.9%	85.58%

Nguyen and Kenyon, PMES-16 (2016)

- So far, quantum computation (D-Wave 2X) has NOT outperformed its classical counterpart (GUROBI). Both are <u>comparable</u>.
- We already made the problem hard. We need to make it harder.
- How can we <u>make</u> the SC problem <u>harder</u> for both?

OPTIMIZATION

From <u>SC</u> perspective: more overcomplete, harder to solve...

Meanwhile: The full Chimera in D-Wave offers a certain set of (<u>nearest-neighbor</u>) connectivity...

OPTIMIZATION

From <u>SC</u> perspective: more overcomplete, harder to solve...

Meanwhile: The full Chimera in D-Wave offers a certain set of (<u>nearest-neighbor</u>) connectivity...

EMBEDDING technique

From <u>SC</u> perspective: more overcomplete, harder to solve...

Meanwhile: The full Chimera in D-Wave offers a certain set of (<u>nearest-neighbor</u>) connectivity...

EMBEDDING technique

- Embedding exploits the ability to tie qubits together
- Employ all bipartite couplings
- Small number of nodes (qubits) but more couplings for neurons

From <u>SC</u> perspective: more overcomplete, harder to solve...

Meanwhile: The full Chimera in D-Wave offers a certain set of (<u>nearest-neighbor</u>) connectivity...

EMBEDDING technique

OPTIMIZATION

From <u>SC</u> perspective: more overcomplete, harder to solve...

Meanwhile: The full Chimera in D-Wave offers a certain set of (<u>nearest-neighbor</u>) connectivity...

EMBEDDING technique

In practice (D-Wave 2X):

Fully connected: 48, 49 nodes

on DW2X and DW2X_VFYC,

respectively

Partially orthogonal: 72 nodes

Feature optimization!

OPTIMIZATION

STARTING TO SEE SOMETHING GOOD...

No. of Hamiltonians: 1

solver		ROBI sical solver)	D-Wave 2X (ISING)		
47 nodes:	Energy	Time	Energy	Time	
fully connected	-27.84	~ 300 seconds	-27.84	< 60 seconds	

OPTIMIZATION

STARTING TO SEE SOMETHING GOOD...

No. of Hamiltonians: 1

solver		ROBI sical solver)	D-Wave 2X (ISING)		
47 nodes:	Energy	Time	Energy	Time	
fully connected	-27.84	~ 300 seconds	-27.84	< 60 seconds	
70 nodes:	Energy	Time	Energy	Time	
partially Chimera-orthogonal	-43.251	~ 2000 seconds	-43.251	< 60 seconds	

Feature Learning (in progress)

before...

feature optimization

Stochastic gradient descent

Feature Learning (in progress)

before... ...after

many "lazy" features

...THE UNEXPECTED

Imprinting technique

GENERATING FEATURES

randomly sampled imprinting features

...THE UNEXPECTED

GENERATING FEATURES

Does this enhance the "hardness"?

...THE GREAT! UNEXPECTED

Imprinting technique

solver	GOI	ROBI ical solver)	D-Wave 2X (ISING)		
Coores coding	Energy	Time	Energy	Time	
Sparse coding	-129.533	(cutoff) ~ 9 hours	-131.14	< 60 seconds	

...THE GREAT! UNEXPECTED

Imprinting technique

Feature learning

...THE GREAT! UNEXPECTED

Imprinting technique

Feature learning

OUTLINE

- A. SPARSE CODING ON A QUANTUM D-WAVE
- B. IMPLEMENTATION ON D-WAVE MACHINE
- C. SPARSE CODING FOR OBJECT DETECTION
- D.SUMMARY AND FUTURE WORK

D. SUMMARY

- first demonstration of sparse coding using a quantum computer
- **mapping of visual features to D-Wave 2X Chimera**
- benchmark results on standard image classification task
- **Ocompare D-Wave 2X performance with GUROBI**
- obtained solutions to the problems where D-Wave
 2X significantly outperforms GUROBI

CIFAR-10

work in progress...

32x32

airplane

automobile

30x30

color

D. (IN PROGRESS &) FUTURE WORK

- optimize features
- add colors
- hierarchy model
- TrueNorth comparison